skip to main content


Search for: All records

Creators/Authors contains: "von der Heydt, Anna S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract. The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eocene–Oligocene transition. Here, we present the results of CMIP5-like coupled climate simulations using the Community Earth System Model (CESM) version 1. Using a new detailed 38 Ma geography reconstruction and higher model resolution compared to most previous modelling studies and sufficiently long equilibration times, these simulations will help to further understand the middle to late Eocene climate. At realistic levels of atmospheric greenhouse gases, the model is able to show overall good agreement with proxy records and capture the important aspects of a warm greenhouse climate during the Eocene. With a quadrupling of pre-industrial concentrations of both CO2 and CH4 (i.e. 1120 ppm and ∼2700 ppb, respectively, or 4 × PIC; pre-industrial carbon), sea surface temperatures correspond well to the available late middle Eocene (42–38 Ma; ∼ Bartonian) proxies. Being generally cooler, the simulated climate under 2 × PIC forcing is a good analogue for that of the late Eocene (38–34 Ma; ∼ Priabonian). Terrestrial temperature proxies, although their geographical coverage is sparse, also indicate that the results presented here are in agreement with the available information. Our simulated middle to late Eocene climate has a reduced Equator-to-pole temperature gradient and a more symmetric meridional heat distribution compared to the pre-industrial reference. The collective effects of geography, vegetation, and ice account for a global average 5–7 ∘C difference between pre-industrial and 38 Ma Eocene boundary conditions, with important contributions from cloud and water vapour feedbacks. This helps to explain Eocene warmth in general, without the need for greenhouse gas levels much higher than indicated by proxy estimates (i.e. ∼500–1200 ppm CO2) or low-latitude regions becoming unreasonably warm. High-latitude warmth supports the idea of mostly ice-free polar regions, even at 2 × PIC, with Antarctica experiencing particularly warm summers. An overall wet climate is seen in the simulated Eocene climate, which has a strongly monsoonal character. Equilibrium climate sensitivity is reduced (0.62 ∘C W−1 m2; 3.21 ∘C warming between 38 Ma 2 × PIC and 4 × PIC) compared to that of the present-day climate (0.80 ∘C W−1 m2; 3.17 ∘C per CO2 doubling). While the actual warming is similar, we see mainly a higher radiative forcing from the second PIC doubling. A more detailed analysis of energy fluxes shows that the regional radiative balance is mainly responsible for sustaining a low meridional temperature gradient in the Eocene climate, as well as the polar amplification seen towards even warmer conditions. These model results may be useful to reconsider the drivers of Eocene warmth and the Eocene–Oligocene transition (EOT) but can also be a base for more detailed comparisons to future proxy estimates. 
    more » « less
  2. null (Ed.)
    Abstract. Palaeoclimate simulations improve our understanding ofthe climate, inform us about the performance of climate models in adifferent climate scenario, and help to identify robust features of theclimate system. Here, we analyse Arctic warming in an ensemble of 16simulations of the mid-Pliocene Warm Period (mPWP), derived from thePliocene Model Intercomparison Project Phase 2 (PlioMIP2). The PlioMIP2 ensemble simulates Arctic (60–90∘ N) annual meansurface air temperature (SAT) increases of 3.7 to 11.6 ∘Ccompared to the pre-industrial period, with a multi-model mean (MMM) increase of7.2 ∘C. The Arctic warming amplification ratio relative to globalSAT anomalies in the ensemble ranges from 1.8 to 3.1 (MMM is 2.3). Sea iceextent anomalies range from −3.0 to -10.4×106 km2, with a MMManomaly of -5.6×106 km2, which constitutes a decrease of 53 %compared to the pre-industrial period. The majority (11 out of 16) of models simulatesummer sea-ice-free conditions (≤1×106 km2) in their mPWPsimulation. The ensemble tends to underestimate SAT in the Arctic whencompared to available reconstructions, although the degree of underestimationvaries strongly between the simulations. The simulations with the highestArctic SAT anomalies tend to match the proxy dataset in its current formbetter. The ensemble shows some agreement with reconstructions of sea ice,particularly with regard to seasonal sea ice. Large uncertainties limit theconfidence that can be placed in the findings and the compatibility of thedifferent proxy datasets. We show that while reducing uncertainties in thereconstructions could decrease the SAT data–model discord substantially,further improvements are likely to be found in enhanced boundary conditionsor model physics. Lastly, we compare the Arctic warming in the mPWP toprojections of future Arctic warming and find that the PlioMIP2 ensemblesimulates greater Arctic amplification than CMIP5 future climate simulationsand an increase instead of a decrease in Atlantic Meridional OverturningCirculation (AMOC) strength compared topre-industrial period. The results highlight the importance of slow feedbacks inequilibrium climate simulations, and that caution must be taken when usingsimulations of the mPWP as an analogue for future climate change. 
    more » « less
  3. null (Ed.)
    Abstract. The Pliocene epoch has great potential to improve ourunderstanding of the long-term climatic and environmental consequences of an atmospheric CO2 concentration near ∼400 parts permillion by volume. Here we present the large-scale features of Plioceneclimate as simulated by a new ensemble of climate models of varyingcomplexity and spatial resolution based on new reconstructions ofboundary conditions (the Pliocene Model Intercomparison Project Phase 2;PlioMIP2). As a global annual average, modelled surface air temperaturesincrease by between 1.7 and 5.2 ∘C relative to the pre-industrial erawith a multi-model mean value of 3.2 ∘C. Annual mean totalprecipitation rates increase by 7 % (range: 2 %–13 %). On average, surface air temperature (SAT) increases by 4.3 ∘C over land and 2.8 ∘C over the oceans. There is a clear pattern of polar amplification with warming polewards of 60∘ N and 60∘ S exceeding the global mean warming by a factor of 2.3. In the Atlantic and Pacific oceans, meridional temperature gradients are reduced, while tropical zonal gradients remain largely unchanged. There is a statistically significant relationship between a model's climate response associated with a doubling in CO2 (equilibrium climate sensitivity; ECS) and its simulated Pliocene surface temperature response. The mean ensemble Earth system response to a doubling of CO2 (including ice sheet feedbacks) is 67 % greater than ECS; this is larger than the increase of 47 % obtained from the PlioMIP1 ensemble. Proxy-derived estimates of Pliocene sea surface temperatures are used to assess model estimates of ECS and give an ECS range of 2.6–4.8 ∘C. This result is in general accord with the ECS range presented by previous Intergovernmental Panel on Climate Change (IPCC) Assessment Reports. 
    more » « less
  4. Abstract

    Estimates of global mean near‐surface air temperature (global SAT) for the Cenozoic era rely largely on paleo‐proxy data of deep‐sea temperature (DST), with the assumption that changes in global SAT covary with changes in the global mean deep‐sea temperature (global DST) and global mean sea‐surface temperature (global SST). We tested the validity of this assumption by analyzing the relationship between global SST, SAT, and DST using 25 different model simulations from the Deep‐Time Model Intercomparison Project simulating the early Eocene Climatic Optimum (EECO) with varying CO2levels. Similar to the modern situation, we find limited spatial variability in DST, indicating that local DST estimates can be regarded as a first order representative of global DST. In line with previously assumed relationships, linear regression analysis indicates that both global DST and SAT respond stronger to changes in atmospheric CO2than global SST by a similar factor. Consequently, this model‐based analysis validates the assumption that changes in global DST can be used to estimate changes in global SAT during the early Cenozoic. Paleo‐proxy estimates of global DST, SST, and SAT during EECO show the best fit with model simulations with a 1,680 ppm atmospheric CO2level. This matches paleo‐proxies of EECO atmospheric CO2, indicating a good fit between models and proxy‐data.

     
    more » « less